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FREE OSCILLATIONS OF A THIN FLUID LAYER

OF FINITE ELECTRIC CONDUCTIVITY UNDER THE ACTION

OF AN EXTERNAL MAGNETIC FIELD

UDC 532.59:533.951A. I. Zadorozhnyi and R. A. Gruntfest

The problem of free oscillations of a thin layer of a heavy, incompressible, inviscid fluid of finite
electrical conductivity in a horizontal magnetic field is reduced to a system of integrodifferential
Fredholm equations with variable coefficients. A numerical analysis is performed over a broad
range of input parameters, and the results obtained are supplemented with asymptotic formulas
with large and small magnetic Reynolds numbers. A classification of the resulting wave modes is
proposed. It is shown that certain conditions can lead to the occurrence of unstable oscillations
of the fluid layer that grow in time.

A magnetic field has a significant effect on the free oscillations of a fluid of finite electrical conductivity,
primarily because of dissipation of kinetic energy into Joule heat. A review of the literature shows that this
problem was the subject of only a few studies (see, e.g., [1–3]). In the fluid dynamics of wave motion, it is usual
to employ two approaches — long-wave and short-wave approximations [4]. The short-wave approximation
uses the model of a fluid of infinite depth, and the long-wave approximation is based on the model of a thin
layer. The present work is devoted to a theoretical and numerical study of the spectrum of free oscillations
in the thin-layer approximation. We consider surface and internal MHD waves for a heavy, inviscid fluid
of finite electrical conductivity under the action of an external magnetic field induced by a direct electric
current. Calculation results are given, and a classification of the wave modes is proposed.

1. Formulation of the Problem. We consider the physical model shown in Fig. 1 (the z axis is
directed vertically upward). In the lower half-plane −∞ < z < −d there is a substrate (solid dielectric).
Vacuum or a nonionized gas is located in the upper half-plane 0 < z < ∞. These regions are subjected to
the action of a horizontal magnetic field of constant intensity Hi (i = 1 for vacuum and 2 for the substrate).
The layer −d < z < 0 is occupied by a conducting inviscid fluid. Let the fluid be acted upon by gravity and
magnetic field H(z) directed along the x axis. This magnetic field can be generated by an electric current
passing through the fluid perpendicular to the Oxy plane. According to Ampere’s law, the density of this
current is j = dH/dz (in the SI-system). If the current density is constant over the depth of the layer, the
magnetic intensity depends linearly on the depth H(z) = H0(1− γz/d), where H0 is the intensity on the free
surface of the fluid and γ = −jd/H0. Assuming that the fluid flow is planar we introduce the velocity vector
V = (Vx, Vz) and the perturbation of the magnetic intensity h = (hx, hz) due to the fluid flow. Since below
we consider natural oscillations of the fluid, we introduce the wavelength L, which is used as the characteristic
dimension along the x axis. The parameter δ = d/L is considered small, which corresponds to the thin-layer
approximation. Within the framework of this approximation, the equations of motion of the conducting fluid
in the dimensionless variables take the form [2, 4]
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Fig. 1. Three-layer model “vacuum–fluid–substrate.”
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where p∗ = p+ z+ AlH2(z)/2 + AlH(z)hx (p is the fluid-dynamic pressure). The magnetic intensity satisfies
the induction and continuity equations
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In (1) and (2), Al = µcH
2
0/(ρgd) is the Alfén number, Rem = d2µcσ

√
gd/L is the magnetic Reynolds number,

ρ, σ, and µc are the density, electric conductivity, and magnetic permeability of the fluid, g is the free-fall
acceleration, and d is the thickness of the layer. The magnetic field directed by the fluid flow in the regions
of vacuum and substrate satisfy the Maxwell equations [2]
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2hix
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+
∂hiz
∂z
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We consider the boundary conditions. On the fluid–substrate interface, the vertical velocity of the
fluid is equal to zero and the normal projection of the magnetic-induction vector and tangential component
of the magnetic-stress tensor are continuous:

Vz = 0, µhz = h2z, µ = µc/µ2, µ(1 + γ + hx)hz = (k2 + h2x)h2z, z = −1.

Here k2 = H2/H0 and µ2 is the magnetic permeability of the substrate. For the third condition, the following
cases are possible.

1. The normal projections of the magnetic intensity are equal to zero:

hz = 0, h2z = 0, z = −1. (4)

The tangential projections of the magnetic intensity can have a discontinuity due to the existence of a
boundary current in the fluid that can have both constant and variable components. If k2 = 1 + γ, a direct
current is absent, and in the case h2x = hx, the variable component of the current disappears.

2. The tangential projections of the magnetic intensity are identical:

hx = h2x. (5)

We note that free oscillations are possible only for k2 = 1 + γ. The equation of the fluid–vacuum interface is
written as z = ζ(x, y, t). Here, the following conditions must be satisfied: the kinematic condition ∂ζ/∂t = Vz
(z = 0), the dynamic continuity condition for the normal component of the total stress tensor

−p+ Tnn = −pa + T1nn (z = 0) (6)
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(pa = const is the external pressure on the surface), and the continuity condition for the normal projection
of the magnetic induction and the tangential component of the magnetic-stress tensor [2]
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Here k1 = H1/H0 and µ1 is the magnetic permeability of vacuum (values µ > 1 correspond to the magnetized
fluid [5]). Again, the following two cases are possible:

Case 1. The normal projections of the magnetic intensity are equal to zero, and
∂ζ

∂x
= hx, k1

∂ζ

∂x
= h1x; (7)

Case 2. The tangential projections of the magnetic intensity are identical:

hx = h1x, k1 = 1. (8)

After substitution of the expressions for the normal components of the total stress tensor, condition
(6) becomes

p∗ = pa + Al/2 + Alh1x + ζ (z = 0). (9)

The boundary conditions should be supplemented with the requirement that the magnetic-field perturbations
damp at infinity in the vacuum and substrate regions:

hix = 0, hiz = 0, z → ±∞ (i = 1, 2). (10)

For metallurgical applications, natural conditions are the continuity conditions (5) and (8) for the
tangential components of the magnetic intensity on the surface and at the bottom [2], and, hence, they are
used in the present calculations. Other combinations of the boundary conditions are of theoretical interest
[3].

2. Separation of Variables and Reduction to a Boundary-Value Problem for a System of
Integrodifferential Equations. All functions are sought in the form f(x, z, t) = F (z) exp (−λt + ix). We
consider the substrate region (−∞ < z < −1), assuming (h2x, h2z) = (X2(z), Z2(z)) exp (−λt + ix). Using
Eqs. (3) and the damping conditions (10) for i = 2, it is easy to show that for small δ (thin fluid layer),
we have X2(z) = O(δ) = 0 and Z2(z) = Z2(−1) exp (δ(z + 1)). From this, taking into account boundary
condition (4), we obtain

h2x = 0, h2z = 0. (11)

Similarly, for vacuum (0 < z < ∞), we introduce (h1x, h1z) = (X1(z), Z1(z)) exp (−λt + ix) and taking into
account (3) and (10), we obtain X1(z) = O(δ) = 0 and Z1(z) = Z1(0) exp (−δz) for i = 1. Finally, for the
fluid, we introduce the notation (hx, hz, Vx, Vz, ζ, p) = (X(z), Z(z), U(z),W (z), S, P ) exp (−λt+ ix) and write
the equations of induction and motion (1) and (2) in the form

−λX(z) = − ∂

∂z
(HW ) +

1
Rem

X ′′(z), −λZ(z) = iH(z)W (z) +
1

Rem
Z ′′(z),

(12)
−λU(z) = −iP + Al (ZH ′ −HZ ′), Z ′(z) + iX(z) = 0.

At the bottom (z = −1), for case 1 of boundary conditions (4), we have W (−1) = 0 and Z(−1) = 0,
and, hence, from the second of Eqs. (12), it follows that Z ′′(−1) = 0. Differentiating the third of Eqs. (12)
with respect to z, and setting z = −1, we obtain the condition

U ′(−1) = 0. (13)

For case 2 of the conditions at the bottom (5), the induction equations (12) yield Z ′′ = −RemλZ, X ′′ =
Rem(1 + γ)W ′, and z = −1. With allowance for these equalities, the third of Eqs. (12) gives

λU(−1) +
1
λ

0∫
−1

U(z) dz +
γ

Rem(1 + γ)
U ′(−1) = 0. (14)
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On the free surface (z = 0), for case 1 of conditions (7) we obtain

U ′(0) = 0. (15)

For case 2 [see (8)], the following equalities are valid: µ(Z − iS) = Z1 − iS, Z ′ = 0, and W = −λS at z = 0.
From this, taking into account Eqs. (12) we have

λU(0) +
1 + Alγ

λ

0∫
−1

U(z) dz +
γ

Rem
U ′(0) = 0. (16)

Elimination of P from the third of Eqs. (12) using (9) gives the equation

λU(z) +
1
λ

0∫
−1

U(ξ) dξ = AlH2(z)
(Z(z)
H(z)

)′
.

We make the replacement Φ(z) = (Z(z)/H(z))′ = −(1/H(z))(iX(z) + Γ(z)Z(z)), where Γ(z) = H ′(z)/H(z).
The function Γ(z) characterizes the vertical stratification of the magnetic field. The second of Eqs. (12) is
divided by H(z) and differentiated with respect to z. Taking into account the continuity equation, we obtain
U(z)+λΦ(z)+(1/Rem)(Z ′′(z)/H(z))′ = 0. Further transformations involve the elimination of Z(z) from the
last expression. As a result, for the functions U(z) and Φ(z), we have the following system of homogeneous
integrodifferential equations:

λU(z) +
1
λ

0∫
−1

U(ξ) dξ −AlH2(z)Φ(z) = 0,

(17)

Φ′′(z) + 2Γ(z)Φ′(z)− 2Γ2(z)Φ(z) + Rem(U(z) + λΦ(z)) = 0

and the boundary conditions on the surface (15) or (16) and at the bottom (13) or (14). In what follows, to
eliminate the occurrence of singular points (poles) in the coefficients of system (17), we assume that γ > −1.
It should be noted that the spectral parameter λ appears in (17) in a nonlinear manner.

3. Derivation of the Energy-Balance Equation. The energy-balance equation is commonly used
to prove the free oscillation theorem. However, boundary conditions (13)–(16) do not always allow one to do
this. Nevertheless, the derivation of the energy-balance equation can be useful for obtaining some estimates.
We multiply the third of Eqs. (12) by Ū(z) (complex-conjugate quantity), write the first of Eqs. (12) in
complex-conjugate form, and multiply it by AlX(z). Then, integrating both equalities with respect to z in
the limits (−1, 0) and combining the integration results, we obtain the relation

λ‖U‖2 + λ̄Al‖X‖2 − Al
Rem

‖X ′‖2 +
1
λ
|W (0)|2 −Al λ̄γ|Z(0)|2 − γλ

Rem
Z ′′(0)Z(0) = 0,

which, by virtue of the equality ‖X‖2 = ‖HΦ‖2 − γ|Z(0)|2, becomes

λ‖U‖2 + λ̄Al ‖HΦ‖2 − Al
Rem

‖X ′‖2 +
1
λ
|W (0)|2 − γλ

Rem
U ′(0)Z(0) = 0. (18)

Thus, the last term outside the integral is absent in the following cases:
1) The external magnetic field in the fluid is constant (γ = 0);
2) On the free surface, the normal components of the magnetic intensity are equal to zero: U ′(0) = 0

(case 1). In this case, after separation of the real and imaginary parts, formula (18) leads to the inequality
Re (λ) > 0, which implies that all free oscillations are damping. In the remaining cases [variable magnetic
field and identical tangential projections of the magnetic intensity on the free surface (case 2)] the extra-
integrand term enters in expression (18), which indicates that certain conditions can lead to the occurrence
of stable modes. Calculations confirm that they occur for small Rem.
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4. Implementation of Calculations and Analysis of Results. Let us reduce the integro-
differential system of equations (17) to a boundary-value problem for a system of ordinary differential equa-
tions. We introduce the functions

V (z) = iW (z) =

z∫
−1

U(ξ) dξ, ϕ(z) = H2(z)Φ(z), ψ(z) = ϕ′(z).

Then, system (17) becomes

V ′ = U, U ′ =
ψ

λ̃
, ϕ′ = ψ, ψ′ = − 2γ

H(z)
ψ − R̃em (λ̃ϕ+H2(z)U),

(19)
R̃em = Rem

√
Al, λ = λ̃

√
Al.

As the boundary conditions, we have any pair combination of equalities (one at the bottom and one at the
free surface)

ψ(−1) = 0, λ̃U(−1) +
1
λ̃Al

V (−1) +
γ

R̃emλ̃(1 + γ)
ψ(−1) = 0,

(20)

ψ(0) = 0, λ̃U(0) +
1 + Al γ
λ̃Al

V (0) +
γ

R̃emλ̃
ψ(0) = 0,

which should be supplemented with the equalities

V (−1) = 0, Al (λ̃U(0)− ϕ(0)) + V (0)/λ̃ = 0. (21)

The last boundary condition follows from the first of Eqs. (17) at z = 0. Below, the tilde sign above the
corresponding quantities is omitted. When integrating the boundary-value problem (19)–(21), it is necessary
to treat the spectral parameter λ and the sought eigenfunctions as complex quantities and to introduce real
and imaginary parts for them. As a result, we obtain a real system of the eighth order and eight boundary
conditions. This system with initial conditions at the bottom (z = −1) is solved numerically by the Runge–
Kutta method of the fifth order with a relative error of order 10−6. Satisfaction of the boundary conditions
on the surface (z = 0) and the condition for existence of a nontrivial solution give a complex nonlinear system
for λ = α+ iβ, which was solved numerically by the Newton method [6] with a relative error of 10−4. In the
calculations, various combinations of the boundary conditions were used. In the present work, as noted above,
we chose the continuity conditions for the tangential projections of the magnetic intensity at the bottom and
the free surface, which correspond to metallurgical processes. The guaranteed relative error in calculations
of simple eigenvalues is equal to 10−4.

The dispersion pattern in the complex plane λ for γ = 0.4 (the external magnetic field intensity
increases from the surface to the bottom) and fixed Alfvén numbers Al = 9, 10, . . . , 14 is shown in Fig. 2. It
is possible to distinguish two oscillation modes that behave differently as Rem →∞.

The first mode (high-frequency gravitational surface waves) is characterized by a continuous limiting
transition to a fluid of infinite conductivity, whose asymptotic behavior is constructed by the Lomov method
[7] and has the form

λ = iβ +
1− i√
2 Rem

β1 +O
( 1

Rem

)
, U(z) =

β2 − (1 + γ)2

β2 + (1− γ)2
,

β1 =
V (0)(U(0)− (1 + γAl)/(Alβ2)V (0) + 1/

√
U(0)(1− V (0)/(Alβ2)))

Alβ
√
β − 1/β(‖U‖2 + ‖HU‖2/β2 + V (0)/(Alβ2))

.

Here U(z) and β are the eigenfunction and the eigenvalue for the degenerate problem (Rem = ∞) and β is
the larger root of the dispersion equation∣∣∣(β − 1)(β + 1 + γ)

(β + 1)(β − 1− γ)

∣∣∣ = exp (2 Alβγ), β > max (1.1 + γ), Al |γ| < 1. (22)
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Fig. 2. Dispersion curves in the plane (α, β) at γ = 0.4
(Al = 9, 10, . . . , 14, Al1 = 11.5, and Al2 = 5.6).

As follows from the expression for λ, the first approximation leads to wave damping and a decrease in the
oscillation frequency by the value of the logarithmic decrement. For Al < Al1 = 11.5, as Rem decreases,
the logarithmic decrement α has a maximum and then tends to zero as Rem → 0 (undamped resonant
oscillations). If Al > Al1, a decrease in Rem corresponds to an increase in the logarithmic decrement and a
decrease in the oscillation frequency to zero, after which two aperiodic (nonoscillatory) motions of the fluid
arise. Maximum amplitudes of the vertical displacements are reached on the fluid surface.

The second mode (low-frequency electromagnetic surface waves) (Fig. 2) has a zero limiting eigenvalue
for Rem →∞ and the following asymptotic relation for the boundary layer:

λ =
1 + i

√
3

2
3

√
(1 + (1 + γ)(1 + Al γ))2

Rem
√

Al (1 + Al (1 + γ))2
+O

( 1

Re2/3
m

)
.

In the second mode, the spectrum has properties similar to the properties of the spectrum in the first mode
but with satisfaction of the inequality Al < Al1. This complex behavior of the dispersion curves is due to the
fact that at Al = Al1 and Rem = Rem1 there is a double complex eigenvalue through which the separatrices
dividing both modes pass. It is established that the behavior of the multiple mode is given by the law
(F ∗k (z) + tFk(z)) exp (−λkt), where Fk(z) and F ∗k (z) are the natural and associated functions. Maximum
vertical displacements again occur on the fluid surface. A similar pattern was obtained in [8] for γ = 0.

Figure 3 shows the dispersion pattern for γ = −0.8 (the magnetic intensity decreases from the surface
to the bottom) and fixed Alfvén numbers Al = 1.5, 1.75, . . . , 3.0. One can see the above-mentioned two
oscillation modes, separated by the value Al1 = 2.05, and, in addition, there are unstable oscillations with
growing amplitude for Al > Al2 = 3.15 and small magnetic Reynolds numbers. Figure 4 shows the unstable
region of the spectrum in greater detail. Here γ = −0.4, the Alfvén numbers are Al = 5.45, 5.5, . . . , 5.8, and
instability begins at Al > Al2 = 5.6.

Table 1 gives the dependences of the critical Alfvén numbers Ali(γ) (i = 1 corresponds to the double
complex eigenvalue and i = 2 corresponds to the onset of instability).

For applications, the asymptotic behavior of all modes at Rem → 0 [1] is of interest. Constructing
this asymptotics is a nontrivial mathematical problem. Therefore, in the present work, we only give the final
formula

λ = i

√
1
Al

+
γ(γ + 3)

6
+O(Rem),

which is valid for a positive radicand. Otherwise, instability occurs. Calculations of the dispersion patterns
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Fig. 3 Fig. 4

Fig. 3. Dispersion curves in the plane (α, β) for γ = −0.8 (Al = 1.5, 1.75, . . . , 3.0, Al1 = 2.1, and
Al2 = 3.1).

Fig. 4. Unstable modes for γ = −0.4 (Al = 5.45, 5.5, . . . , 5.8, Al1 = 2.9, and Al2 = 5.6).

TABLE 1

γ Al1 Al2

−0.8 2.05 3.15

−0.6 2.43 3.80

−0.4 2.95 5.60

−0.2 3.68 10.60

0 5.15 —

0.2 6.77 —

0.4 11.10 —

0.6 32.50 —

Fig. 5. Dispersion curves in the plane (α, β) for Alfvén internal
dissipative waves (γ = −0.4, −0.2, 0, 0.2, and 0.4).

given in Figs. 3 and 4 and in Table 1 confirm this result, whose possibility was discussed in deriving the
energy-balance equation.

There is one more type of oscillations, called Alfvén internal dissipative waves (Fig. 5). In this case,
the dispersion curves depend weakly on Al and practically merge. For the present value of Al, we have a
finite number of oscillatory modes that correspond to different ranges of Rem. At the points Mk located
on the material axis, the oscillatory motion of the fluid is converted to two aperiodic motions (double real
eigenvalues). They correspond to a monotonically increasing sequence of numbers Rem,k → ∞. For the kth
mode, we have Rem > Rem,k, but as Rem →∞, all modes have one limiting point [the second, smaller, root
of the dispersion equation of the degenerate problem (22)]. The neighborhood of the limiting point contains
a finite number of eigenvalues that can become as large as one likes with increase in Rem. For rather large
Reynolds numbers, at depth z = (1 − Im (λ))/γ there is a turning point of the differential operator. In the
neighborhood of this point, the velocity field undergoes a sharp change which degenerates into a tangential
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discontinuity of the second kind that takes place in an infinitely conducting fluid. All oscillation modes of
the fluid are of the character of internal waves because their maximum amplitudes are located inside the
layer. These waves are adequately described by a combination of the approximation of “a rigid boundary”
[W (0) = 0] and the Boussinesq approximation (|γ| � 1 and H = const), and this makes it possible to obtain
all results in analytical form.

REFERENCES

1. I. M. Kirko, Liquid Metal in an Electromagnetic Field [in Russian], Énergiya, Moscow–Leningrad (1964).
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